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Abstract

We construct and analyze parallel iterative solvers for the solution of the linear systems arising in the ap-
plication of Newton’s method to s-stage implicit Runge—Kutta (RK) type discretizations of implicit differential
equations (IDEs). These linear solvers are partly iterative and partly direct. Each linear system iteration again
requires the solution of linear subsystems, but now only of IDE dimension, which is s times less than the
dimension of the linear system in Newton’s method. Thus, the effective costs on a parallel computer system
are only one LU-decomposition of IDE dimension for each Jacobian update, yielding a considerable reduction
of the effective LU-costs. The method parameters can be chosen such that only a few iterations by the linear
solver are needed. The algorithmic properties are illustrated by solving the transistor problem (index 1) and the
car axis problem (index 3) taken from the CWI test set. © 1997 Elsevier Science B.V.
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1. Introduction

We consider initial value problems (IVPs) for systems of implicit differential equations (IDEs or
DAEy)

o(g(t),y(t)) =0, y.peR’ (1.1
It will be assumed that the initial conditions are consistent and that the IVP has a unique solution.
Furthermore, we define the Jacobian matrices K := ¢y (u,v) and J = — (. v). In the case of

explicit ordinary differential equations (ODEs) y(t) = f(y(f)) we have ¢(u.v) = u — F(v), so that
J denotes the Jacobian of the right-hand side function f of the ODE.

In this paper, we construct and analyze parallel iterative solvers for the solution of the sd-dimensional
linear systems arising in the application of Newton's method to s-stage implicit Runge-Kutta (RK)
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type discretizations of (1.1). These linear solvers may be considered as inner iteration processes (the
Newton process itself is the outer iteration process). The inner iteration process is partly an iterative
method and partly a direct method. In fact, each inner iteration requires the solution of s linear
subsystems, but now only of the IVP dimension d. We assume that direct solution methods are used
for solving these subsystems. The computational effort consists mainly of the s LU-decompositions
and secondly of the s forward-backward substitutions (briefly FBSs) needed in each inner iteration.
As we will see, the LU-decompositions can be done in parallel, so that the effective costs on a parallel
computer system with at least s processors are only one LU-decomposition of IVP dimension for each
Jacobian update, yielding a considerable reduction of the wall-clock time (see Section 3 for reduction
factors). As to the FBS-costs, we distinguish the Jacobi and the Gauss—Seidel approach. In the Jacobi
approach, the s FBSs per inner iteration can be executed in parallel, so that the effective LU and
FBS-costs only depend on the frequency of the Jacobian updates and the number of inner iterations,
respectively, and not directly on the number of stages used in the RK discretization. For ODEIVPs,
this Jacobi approach was used in [9,11]. We shall show that with appropriate changes, it can also be
used in the IDE case. In the Gauss—Seidel approach (which is in fact a block Gauss—Seidel approach),
part of the FBSs per inner iteration have to be done sequentially which increases the effective FBS
costs.

The main purpose of this paper is a comparison of the convergence factors of the Jacobi and the
Gauss—Seidel approach. The algorithmic properties of the inner iteration method are illustrated by
solving an IDE of index I and of index 3 taken from the literature.

2. Runge-Kutta discretization

We define the Runge-Kutta type formula for solving the IDE (1.1) by (see, e.g., [4, p. 406])

Ynit = (e; 2 1) Y0,
R,(Yii1) =0, Ry(Y):=@((h 'A 0 [)(Y = W,).Y).

Here, A denotes the s-by-s RK matrix which is assumed to be nonsingular, W,, is an sd-dimensional
vector containing information from preceding steps, [ is the d-by-d identity matrix, A is the stepsize
tny1—tyn. and o denotes the Kronecker product. The s vector components Y, ; of the sd-dimensional
solution vector Y,, .| represent numerical approximations to the exact solution vectors y(¢, + ),
¢ = (¢;) being the abscissas vector with ¢, = [. Furthermore, e, is the sth unit vector, y,, is the
numerical approximation to y(?,,), and ¢(U, V') contains the values (¢(U;, V;)) for any pair of vectors
U = (U;) and V = (V;). In the following, we denote with the symbol / the identity matrix, the
dimension of which will be clear from the context.

The method (2.1) is completely specified by A, W, and c. If W, = (£ 0 )Y, with £ := ee],
e representing the s-dimensional vector with unit entries, then (2.1) represents the one-step RK method
{A,b,c} = {A, ATe,, c}. Alternatives are the block methods where £ is a matrix with eigenvalues
on the unit disk, those of magnitude | being simple, and the k-step Radau methods where W), is
defined by a linear combination of the step point values y,,, Y, -1, ..., Yn—141 (see, e.g., [4, p. 295]).
In the following, most of our analysis applies to general back information vectors W,,, but numerical
illustrations will be confined to one-step Radau [IA methods.
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The usual approach for solving the implicit equation R,(Y") = 0 in (2.1) is the application of the
modified Newton method

UK, —AShT) (YY) YU D) = _(hAe R, (YU™), j=1,...,m, (2.2)

where A, and .J,, are the Jacobian matrices A" and J evaluated at the step point ¢,, and m is the
number of Newton iterations which should be determined dynamically in an actual implementation.
Each Newton iteration requires the solution of a linear system of dimension sd. However, already for
moderate values of d, this is quite expensive because the LU-decomposition of the sd-by-sd matrix
I® K, — A®hJ, requires as many as 3 253d? (real) arithmetic operations (operations counts will always
refer to real arithmetic operations). Thxs number of operatlons can be reduced by transforming (2.2)

to “block-diagonal” form (cf. [3]). Let YU) = (Q  I)Y'U), then (2.2) transforms to
(I&K, =A@ h]) (Y'Y - YUY = —(hQ'A2 )R, (Q & I)YU™Y),
A=Q7'4Q. j=1...., m. 2.2"

Assuming that A is nondefective, we can choose ( such that 4 is a o-by-o block-diagonal matrix
with either one-by-one or two-by-two real diagonal blocks, where each diagonal block corresponds to
an eigenvalue (pair) & + ing of A. In fact,

Eks it =0,
A = . .
kk <“" by ) . if e #0.

Ck 28 — ak

Here ay. by and ¢, are real parameters which depend on the matrix () and which satisfy the relation

brep = ——(a,% — 2&ay + af.), Qp = \/Ei + 'r),%. (2.3b)

In the following it will always be assumed that § > 0 and that the ordering of the diagonal blocks
Ay 1 such that the ratio |1, /€| increases with .

If the RK matrix A has only real eigenvalues, as is the case in the methods designed by Orel [12]
and Bendtsen [1], then all diagonal blocks of 7 & K, — A& h.J,, are of order d. When solving the linear
system in (2.2) by a direct linear solver, we need the LU- decompositions of these diagonal blocks,
each requiring d operations. Hence, the rotal LU-costs are srl2 operations. However, since the
LU- decomposntlons can be computed concurrently, the effective computatlonal LU-costs in the block-
diagonalized Newton method (2.2") are only }dz operations, irrespective the value of s. Similarly, the
FBSs can be performed in parallel. '

A drawback of RK matrices with real eigenvalues is the relatively large value of s (and hence large
numbers of processors) in order to achieve a given order of accuracy. More powerful methods with
respect to order of accuracy and stability can be obtained by allowing A to have complex eigenvalues.
For example, in the case of RK discretizations based on Gaussian quadrature formulas, A has at
most one real eigenvalue (if s odd). Hence, the diagonal blocks of I ® K,, — A ® hJ,, are of order
either d or 2d, so that the LU-decompositions require either 2d* or '6d3 operations. However, by
writing the 2d-dimensional systems as d-dimensional systems with complex coefficients, the LU-costs
can be reduced to §d’ operations (cf. Hairer and Wanner [4, p. 132]). Then, the rotal LU-costs are
%(25 — 1)d* operations for s odd and %(25)(13’ operations for s even. Again, the LU-decompositions
can be computed concurrently, so that the effective computational LU-costs are only %(13 operations,

(2.3a)
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irrespective the value of s. The RADAUP codes of Hairer and Wanner [5] use the block-diagonalized
Newton method applied to Radau IIA discretizations of (1.1).

Remark 2.1. In practice (see, e.g., [2]), it may be recommendable to remove the h~! factor occurring
in the residual function R,(YU=1) by introducing “derivative” iterates Y'/) by the relation Y) =
W, + h(A® I)Y'U). Then, the iteration scheme (2.2) becomes

(I® K, *A®th)(Y(j) - Y(j—l)) = —Rn(Wn—l- h(A@I)Y(j—l)), j=1,....,m. (24)

The sequences {Y ()} generated by the schemes (2.2) and (2.4) are algebraically identical, but (2.4)
can be used as h — 0. Furthermore, the structure of the Newton equations in (2.2) and (2.4) is similar.

3. Paralle] linear system solvers

The usual approach for solving the linear systems in (2.2) is the application of the Butcher trans-
formation to obtain the block-diagonalized Newton method (2.2) and the application of a standard

linear solver to the o linear subsystems. The solution method analyzed in this paper is different and
is characterized as follows:

(i) the matrix A in (2.2) is allowed to be block-triangular with (real) diagonal blocks,
(ii) the linear subsystems of dimension d are solved by a standard linear solver,
(iii) the linear subsystems of dimension 2d are solved iteratively by a special inner iteration process
based on splitting.

The diagonal blocks Akk of A are again of the form (2.3) and such that the ratio |n;/&| increases

with k. Furthermore, the inner iteration process is such that only linear systems of dimension are to
be solved.

In the following, we shall consider both the case where A is block- diagonal and the case where Alis
block-triangular. The advantage of a block-triangular matrix A is that well-conditioned transformation
matrices () in the Butcher transformation YU V= = (Q®wlI )Y(J) can be chosen, so that there is no
danger for amplification of iteration errors by an ill-conditioned back transformation. In Section 4, it
will be shown that this improves the convergence factor associated with the inner iteration process.

3.1. Definition of the inner iteration process

Let A= C+ D, where C and D are the strictly lower block-triangular part and block-diagonal part
of A, respectively. Then, (2.2") can be written as

(I K,-D®hl,)YY =G, (Y, vyt
G”(?(]‘)"YV"(J'*I)) = (va ® h]n)?(‘}) + (I ® A e A ® h] ) J"l) (31)
- (hQ'A® )R,((Q® nyu-b ).

This relation represents o linear subsystems with system matrices I @ Ky, — Agp @ hJp, bk =1,..., 0,
the dimension of which is either d or 2d. Note that these systems have to be solved sequentially
unless the matrix C vanishes. Let us partition YU and G, according to YU = (y(j), .. ,y((,J)) and
G, = (gn1,-..,Gno). Then the kth subsystem has the form

e |
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. e ~(j Si=1) ~( ~
(I®KTL—Akk®th)yl(c):gnk(Y(J l),yfj),...,y,(\il) k=1,...,0 (3.1)

where I has the same order as Ay. If C # O, then the right-hand side is available as soon as the
first & — 1 subsystems have been solved. If C' = O, then the right-hand side does not depend on
(9, g Yo ,y,(j ) 1)> so that all subsystems can be solved concurrently.

The d-dimensional subsystems in the set (3.1’) are now solved by a standard hnear solver, the 2d-
dimensional subsystems are solved iteratively by introducing the splitting Apr = B+ (AM - Bkk)

where Bkk 1s a diagonalizable 2-by-2 matrix with positive eigenvalues. This leads to the (inner)
iteration method

(I®Kn - Ekk@hjn)jl:l,i ((Bkk—AM) ® hJy ) gvh

= gk (Y’U—”, o g, (32)
where v = 1,2,...,r is the inner iteration index (the number of inner iterations r may depend on k).

Each inner iteration again requires the solution of a linear system of dimension 2d. However, since
Bk;, is assumed to be diagonalizable, the system matrix [ ® K,, — BM & hJ, of this system can be
block-diagonalized into two subsystems of dimension d. Thus, using the block-diagonalized version
of (3.2), we only have to solve linear systems of the IVP dimension d.

The inner iteration subprocesses can be executed in parallel if C = O and should be done in
sequence if C % (. In fact, the C =0 and C #+ O version of the iteration method (3.2) may
respectively be considered as Jacobi and (block) Gauss—Seidel rype methods. However, assuming that
the d-dimensional subsystems are solved by a direct method, in both cases all LU-decompositions can
be done in parallel, so that the effective LU-costs are 2d3 operations (irrespective the value of s),
yielding a reduction by a factor 4 when compared with the 8(1z operations required by the solution
of the d-dimensional complex subsystems in (2.2). In the Gauss—Seldel version, the main sequential
part (that is, the part that cannot be parallelized) consists of the sequential execution of the FBSs to
solve the s subsystems of dimension d. If 7 is the averaged number of iterations needed to solve
these subsystems, then s7 linear system solves are requlred i.e., 2s7d’ operations. If there are only
2d-dimensional subsystems in (3.2), then effectively 757 linear system solves, i.e., s7d* operations,
are required, whereas block-diagonalized Newton (with block-diagonal A) effectively requires only
8d? operations. Hence, if 7 is large, then the advantage of the reduced LU-costs is easily lost. Thus.
the linear solver (3.2) is only effective if we can choose Bkk such that 7 is small. The choice of BH
will be discussed in Section 4.1.

3.2. Back transformation

Relation (3.2) can be used for the convergence analysis of the inner iteration process in the trans-

formed space, that is, the convergence of the iterates y <] ) However, for a convergence analysis of
the back transformed iterates it is more convenient to mtroduce the inner iterates

YUY = (Qe YU, YU = (g, g8, (33)
where yi = (?) if the kth subsystem in (3.1) happens to have dimension d (ie.. if the corre-

sponding eigenvalue of A is real). In terms of Y (") the inner iteration process reads
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(I® Ky~ B®hJ,) YU + ((B - D)@ hJ,) YU = G (YY), ¥,
v=12,..., (3.4)

where G, is defined in (3.1) and B is the block-diagonal matrix with diagonal blocks By, with
Bk = Agy = & if Agy is a one-by-one block. Defining the pair {B,C} = {QBQ~',QCQ ™'}, the
back transformation of (3.4) reads

(I® Ky ~ B@hJ,) (Y1) — yiw=D)
= (C®hJ,) YV - (I® K, - (A= C) @ hJ,) YD
+(I®K, = A®hJ,)YYU™) — (hA® DR, (YU™D), v=12,... . (3.5)

Estimates of the speed of convergence should be based on the iteration errors associated with (3.5),
rather than on the iteration errors associated with (3.4).

The linear solver (3.5) will be called a PILSRK method (parallel iterative linear system method for
RK discretizations) and the process {(2.2), (3.5)} will be called a Newton—PILSRK method.

3.3. Generalization

Having obtained the back transformation (3.5) of the inner iteration method (3.4), one may wonder
whelher this method can be generalized by using other matrices B and C than the pair {B,C} =
{QBQ~',QCQ~"}. Indeed, the PILSRK method (3.5) is a consistent iteration process for solving
the linear Newton systems in (2.2) for any pair {B,C} such that ] ® K,, — B ® hJ, is invertible.
However, in order to have a practical method, we should impose conditions on B and C'. In the first
place, we should of course require that B is similar to a diagonal matrix B*, ie., B* = S™!BS is
diagonal for some nonsingular matrix S. If this condition is satisfied, then we can diagonalize (3.5)
yy means of the Butcher transformation Y'U) = (S ® I) X U) to obtain

(I ® Kn— B* ® hJ,,) (XU¥) — xUv=D)
= (C*®@hJ,) XD — (I K, — (A* = C*) @ hJ,) X 0¥ D)
+(I @Ky~ A @hJy) XU — (5T AR DR(YYTY), v=12,., (3.6)

where A* = S™'AS and C* = S~!CS. First of all, we see that the diagonal structure allows us to
decouple the LU-decomposition of the system matrix I ® K, — B* ® h.J, into s LU-decompositions
of size d. Furthermore, if C* = O, then each inner iteration step in (3.6) can be decoupled into
s independent iteration steps which can be executed in parallel. If C* # O, then (3.6) shows that
we can decouple each inner iteration step in (3.6) into two or more independent iteration steps by
imposing a special block structure on the matrices C* and A* — C*. In this way, we can define a more
general family of PILSRK{B, C'} methods which contains the method {B,C} = {QBQ~',QCQ™"}
described in the preceding sections as a special case.

Remark 3.1. The Jacobi version of (3.5) can be considered as a conventional iteration method for
linear systems based on the splitting

I®QK,-A®h],=(IRK,—-B®hJ,)+ (B —A)® hJy,.
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Remark 3.2. If only one inner iteration is performed and if we set Y00 = YU=D and Y () = y (1),
then the PILSRK method (3.5) reduces to

({2 K,—(B+C)®h),)(YY ~YU) = (hA® )R, (YU™). 3.7

This scheme may be considered as an “approximate” Newton scheme obtained by replacing in (2.2)
the matrix A by B+ C. If B+ C is similar to a lower triangular matrix with positive diagonal entries,
then we can diagonalize (3.7), so that effectively only one FBS is required per outer iteration. The
method (3.7) is related to the PDIRK and PTIRK methods proposed in [7,8] for ODEs. These PDIRK
and PTIRK methods are obtained by replacing K,, with the identity matrix, by setting C = O, and
by choosing for B either a diagonal matrix or a lower triangular matrix.

Remark 3.3. Even on sequential computers the diagonalized forms of the PILSRK methods (3.5)
may be more efficient than the block-diagonalized Newton method. For example, if s is even, then the
total LU-costs and FBS-costs associated with (3.5) respectively require %sd3 and 2s7d’ operations,
whereas block-diagonalized Newton requires %‘sd3 and 4sd” operations. Hence, if 7 < 2, then the
PILSRK method does not require more FBS-costs, while its LU-costs are 2 times less expensive.

4. Convergence results

The convergence can be studied by analyzing the (exact) error recursion
YU _yl) = M(y(jd/-l) _ Y(j)),
M:=(I®K,-B®hJ,) ' (A~ B~ C)® hJy,). (4.1

Here, B and C' may be any pair of matrices, but as already pointed out, the PILSRK method (3.5) is
only a feasible method if the matrices B and C have an appropriate structure (see Section 3.3).

In the convergence analysis, we shall suppose that

(i) K, is nonsingular,

(ii) {Kn,, J,} has a complete (generalized) eigensystem.

(We will refer to these assumptions as property P.) In practice, this is of course an unrealistic situation.
However, by observing that d-by-d matrix pairs {K, J} having property P are dense in the space of
all d-by-d matrix pairs, we can define a one-parameter family of matrix pairs {K(¢), J(¢)} which
satisfies property P for € > 0 and which converges to {K,, J,} as ¢ — 0. Hence, for the matrix M ()
corresponding to {K (¢), J(¢)} we have M(g) — M as € — 0. Thus, a convergence analysis based
on property P is relevant for the case where this property is not satisfied.

A necessary and sufficient condition for convergence of the PILSRK methods is p(M) < 1. In order
to obtain the eigenvalues of M, we shall list all its eigenvectors. First we look for eigenvectors of the
form a ® w, where a and w are vectors of dimensions s and d, respectively. If the eigenvalues are
denoted by p, then A(A — B~ C + uB)a ® J,w = pa ® K, w. This shows that J,w and K,w are
related by the eigenvalue equation J,w = AK,w, i.e., A is a (generalized) eigenvalue of the matrix
pair {K,, J,}. On substitution of J,w = AK,w and by defining z := \h, we obtain

2(A-B-Cla® Kyw = pu(l —2B)a® K,w.
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Since K,w # 0, 11 = pu(z) is an eigenvalue of the amplification matrix
Z(z) = z2(I —zB)""(A- B -C). (4.2)

We now impose the condition that Z(hA) is nondefective for all A in the spectrum of o(K,,.J,).
This condition and condition (ii) of property P imply that M has sd eigenvectors of the form a @ w.
Hence, all eigenvectors of M are of this form and its eigenvalues are given by those of Z(hA) with
AEo(Kn,Jn).

Let p(z) be the spectral radius of Z(z). Then, the region of convergence is defined by the region
I':= {z: p(z) <1, Z(z) is nondefective }.

In analogy with the terminology used in the linear stability theory, we shall call the PILSRK method
A-convergent if I' contains the left halfplane and L-convergent if it is A-convergent and if p(z)
vanishes at infinity. Matrix pairs {B,C} will be said to lie in the set B(A) if {B,C'} generates an
A-convergent PILSRK method.

From the considerations above we conclude that the PILSRK method (3.5) converges for all A > 0
if {B,C} € B(A), if {K,,,J,} satisfies property P and if its spectrum is in the nonpositive half-
plane.

In order to get some insight into the convergence behaviour, we observe that after v iterations the
eigenvector components of the iteration error are amplified by Z¥(z), where z = hX corresponds with
the (generalized) eigenvectors of {K,, J,,}. Let us define the averaged amplification factor by

p(”)(z) = 5/ lZ"(z)H. 4.3)

Evidently, the spectral radius p(z) of Z(z) equals p{®)(z) and will therefore be called the asymptotic
amplification factor.

4.1. The asymptotic amplification factor

We shall now consider the case {B,C} = {QﬁQ“J,QéQ“I}, i.e., the process (3.4), in more
detail. We first derive estimates for the asymptotic amplification factor p(z) = p{°)(z). Since the
matrix Z(z) = QZ (2)Q~" is block-diagonal with either one-by-one or two-by-two diagonal blocks,
we may confine our considerations to the diagonal blocks of Z (z). Let us define the one-by-one blocks
Jg’kk of B by & (as in (3.4)) and the two-by-two diagonal blocks

- w.
Bry = ( k g > , U + wg > 2/ UpWg — TEVE, UpWE — LUk > 0 4.4)

Ve W

(the conditions on the entries of Ekk ensure that its eigenvalues are distinct and positive, so that B
is diagonalizable). We shall require that {B,C'} generates an L-convergent iteration method. This
requirement is crucial in order to quickly remove stiff components from the iteration error (see [7]).
In fact, L-convergence implies that Z¥(oco) vanishes for v > 2, because the matrix Z (z) is block-
diagonal. Hence, within two inner iterations, all stiff error components are removed from the iteration
erTor.
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The following result provides a lower bound for p(z) in the left halfplane when we impose the
condition of L-convergence. The proof parallels the proof of a similar theorem in [9].

Theorem 4.1. Ler {B,C} = {QBQ~',QCQ "'}, let Ay, and Byy, be defined by (2.3) and (4.4), and
let the generated PILSRK method be L-convergent. Then, we have in the left halfplane for all ay and
by the inequality

)= max z) > 1 — ==
F Re(:)gop( ) > Oy

Proof. The eigenvalues ju.(z) of the matrix Z(z) = QZ(z)Q~! are given by those of the diagonal
blocks
Zi(2) = 2(1 = 2Byg) ~ (Agy — Byy). (4.5)

If 1 = 0, then Zy(z) vanishes yielding zero eigenvalues. Therefore, we may restrict our con-

siderations to the two-by-two diagonal blocks of Z (z). The eigenvalues of these blocks satisfy the
characteristic equation

ap —wp — (27— wp) pa(2) b — wp + xppp(2) )
det r =0, 0. 4.6)
( Ck — U+ 'UA:/LA:(Z) 28) — ap — wy — (Z b 'U)k),ulc(z) e 7 (
It is easily verified that ji;(z) vanishes at infinity if
2 2 0, 2 2.
o — (ap =286 up + (204 + g )uy — (.1,/,,(1,\77 oy = ap + J,k'l)k’ @7
) — by U,

where .y, and wy, are still free. In addition, we have to satisfy the inequalities in (4.4). Since upwy =
(vf. + ey, these inequalities are satisfied if uy + wy > 2. Eq. (4.6) is solved by

(2‘51\: — Uf — ’lu;\,)z
”%.:32 — (up +wp)z + 1

fp(z) =0, i (z) = (4.8)

Since the function i (z) is regular in the left halfplane, its maximum in the left halfplane is assumed
on the imaginary axis. It is easily verified that

12&k — wr — wi| Y]

[ (i) | = = (4.9)
\/(' — )+ (ug + w)?y?
assumes an absolute maximum at y = :f(Ykl which is given by
max /)(Z;,;\.(::)) = |l — -——2&— o U Wy > 20y (4.10)
Re(z)<0 ) Wh + Wy

This value is bounded below by 1 — Ek(v};' (we recall that we have assumed &, > 0). Hence, we see
that the eigenvalues of A with the smallest ratio §A,(.y;", that is, the eigenvalues with the relatively
largest imaginary part, determine a lower bound for p(z). Recalling that the ordering of the diagonal
blocks /1,,,/1; is such that |7 /&x| increases with k, we conclude that in the left halfplane the maximal
value of p(z) is bounded below by |1 — &, v, !|, proving the assertion of the theorem. [
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From (4.10) it is clear that the best we can do is to choose uj + wi = 20,4, where 0 = 1 + ¢y,
with €4 a small positive number. By virtue of (4.7) we obtain the relation
(ap — 2&.)1& -+ (2&%C + cpag)uy — akai
QR — bkuk
This equation shows that by choosing z; = 0, we can compute uy, independently of the values ay, by

and cy. Since the block-triangularizing matrix () depends on ay, by, ¢i, and vice versa, we preserve

a maximal amount of freedom in selecting Q if xp = 0. Setting zx = 0 and introducing the new
parameter

Vi = Qk,i\/ei-l with 6 > 1,

we obtain

2
uj +of + oy

= 29kakuk.

(77 = Dar = 2736 + 2 wr = %

lai —26ka, +a3) T
We remark that this expression holds for both signs in the formula for ;. By virtue of (4.10), we
have the result

Uk = Vi, Vi = CRpeg

(4.11)

2
~ 27,k !
max p(Zgp(2)) =1 — ——o, . F# 1, > 0. (4.10")
Re(g)gop( kk(2)) 2+ Dor i # Tk
Furthermore, it follows from (4.8) that firstly, Z(z) has a complete eigensystem for all finite z (this
is also true for z = 0, because Z(0) = O), and secondly, p(Zxi(z)) < 1 in the region

> 2 2
(298 — Vhaw — )72 < |magz® — (viaw + o)z + (4.12)
Thus, we have proved

Theorem 4.2. For vy, # 1, . > 0, xp, = 0 and all ay, by, and ¢y, satisfying (2.3b) we have
(i) the matrix pair {B,C} = {QBQ™",QCQ ™"} is in B(A) if B satisfies (4.11),
(i1) the convergence region I' is given by the cross section of the regions (4.12),

27]:51{7

(1i1) max p(z) = max pg, pi=1—-—
p(z) = maxpr, p 2+ Do

Re(2)<0

A comparison with Theorem 4.1 shows that values of «; close to 1 yield an “almost” minimal
spectral radius. In Table 1, we have listed for a few Radau IIA methods the values of p; in the case

v, = 7/8. These values are worst-case values, because in the greater part of the left halfplane, p(z)
is much smaller.

Table |
Values of py. for s-stage Radau IIA methods (v, = 7/8)
k §=2 s=4 5=6 s=38
1 0.19 0.06 0.03 0.02
2 0.45 0.21 0.12
3 0.57 0.33
4 0.64

2 |
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4.2. The averaged amplification factors

First we compute the averaged amplification factor for the eigenvector components of the iteration
error associated with (3.4) after v iterations. These components are amplified by Z vi(2), where z = hA
corresponds with the (generalized) eigenvectors of { K, J, }. Hence, the averaged amplification factor
associated with (3.4) is defined by

7) 26 = Yizuel

= max (),

(v . . . . .
Here, /’L-' ) (z) may be considered as the averaged amplification factor associated with (3.2). Let us set
the free parameter v, = a,ka;', so that the matrix Z}, (z) simplifies to (cf. [9])

72 v 0 A%
Ziw(2) = ni(z) <0 ql‘g )> :

broyz ar — uiz
Hi(z) 1= , o qe(z) = —m, (4.13)
(1 —apz)(ag — (x%,z) (z) C
With respect to the Euclidean norm, we have
N(,, 1/2 2 2y1/2
i 2) = )] (1 a2 = [ |+ ie(@)an(2)]*) 7

We majorize this expression in the left halfplane by using the maximum values of |ui(z)| and the
maximum value of |/ (2)gx(2)|. From Theorem 4.2 it follows that |uk(2)| < px and an elementary
calculation yields

< pp + bia;z.

X )| + [ (2)an(2) ?

Thus,
\/(I/) bz
o) < p N B =1+ =5 (4.14)
Qg Py

Expressing the upper bound (4.14) in terms of the parameters ag, b and ¢, we obtain for the
amplification factors in the transformed and untransformed space the estimates given in the theorem:

Theorem 4.3. [If v, = (th(v,:', then with respect to the Euclidean norm, the averaged amplification

Juctors ﬁif') (z) and p'¥)(z) satisfy in the left halfplane the inequalities

7 21 2”,‘£k ] (a . + “
/N'{/l '(2) < o X/ Prs e =1- PR fr= 1+ ke
ay, + ¢ k @ Ck (4.15)

< YMQmani (), (@)= lQl]Q7.

u)

iz

4.3. The transformation matrix

Theorem 4.3 suggests the use of transformation matrices Q such that a; ~ «y, (to achieve that p,
is close to its minimal value) and (,:i > 1. Such transformation matrices can be constructed, however,
they turn out to be poorly conditioned (cf. [9]), so that we have fast convergence in the transformed
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space, but not necessarily fast convergence in the untransformed space. Therefore, we shall restrict
our considerations to orthogonal transformation matrices. This excludes the Jacobi case with €' = O,
so that we should consider the Gauss—Seidel case C' # O (the Jacobi case {B,C} = {QBQ.Q}
with non-orthogonal @) has been analyzed in [9]).

In order to construct an orthogonal matrix @, let R be an orthogonal transformation matrix such
that S := R™'AR is a real Schur form of A4 with two-by-two diagonal blocks given by

Sk = &k if m, =0,
_ [ @ by, — 2 2 if
Sip = (Qk 2%, - Qk) oobpee = —(ag — 28ay +og). i e #0.
The values of g;, and b, are completely determined by R (for the construction of R we refer to [11]).
We now transform these diagonal blocks by a block-diagonal rotation matrix A = (Aj;) with
1, it n, =0,

Akk = COS('¢)k) — Mn(wk) > B
(Sin(’l#’k) cos(vy) /° it i # 0.

Then, Q = RA, k(Q) = 1 and A = A~'R~'ARA, where the diagonal blocks of A are given by (2.3)
with

ay = @ cos® (i) — (by, + ;) cos(yr) sin(yy) + (26 — a) sin® (Yy),

e = ¢, c08> () + 2y, — &) cos(¢hn) sin(y) — by sin* (vy).
The parameter ;. is chosen such that the spectral radius pp occurring in the upper bound (4.15) is
minimized. This means that a should be close to «. In order to avoid defective matrices By, we
should not allow ap = «y. Let us impose the constraints a; < 7ax/8 and ap > 9y /8. We now
determine v, such that |ay — | is minimized subject to these constraints. If more than one values
of 1y, are found that minimizes |a; — |, then we take the value that also minimizes fy.

For the s-stage Radau ITA methods with s = 2, 4, 6 and 8, we found that there exists ¢,-values
such that aj, = 7oy, /8 (i.e., v = 7/8). The corresponding pi-values are listed in Table 1. For s = 4
and s = 8, the corresponding (J;-values are respectively given by {3.3,2.0} and {2.6,2.8,2.4,2.4}.

Table 2 lists the actual left halfplane upper bounds for p*)(z) using the Euclidean norm in its
definition (4.3) (in brackets, we listed for C = O the theoretical upper bounds of (4.15), which are

Table 2
Actual upper bounds for p**)(z) for Radau 1A (v, = 7/8)
s=4 s =8

v Jacobi  Gauss-Seidel Jacobi  Gauss-Seidel
1 1.95 0.54 (0.63) 3.51 0.84 (0.98)
2 0.98 0.49 (0.53) 1.88 0.73 (0.80)
3 0.76 0.48 (0.50) 1.30 0.70 (0.74)
4 0.66 0.47 (0.49) 1.19 0.68 (0.71)

oo 045 0.45 (0.45) 0.64 0.64 (0.64)
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too pessimistic by only less than 15%). The amplification factors for C' = O are taken from [9] and
turn out to be considerably larger.

4.4. Effect of the predictor

The averaged amplification factor p(”)(z) defined in (4.3) does not take the amplification effect of
the predictor formula for Y% needed in (3.5) into account. This effect plays a role in the overall
convergence. For example, the predictor may have or may have not a strong damping effect on the
stiff iteration error components. It can be included by modifying the definition of the convergence
factor. To that end, we first have to specify the predictors we are going to use. Let Y0 = Y(0) with
YY) defined by either

S((h "B+ ) (Y'Y —(EeoDY,), YY) =0 (4.16a)
or
Y(U) e (1'.':[' 154 [)'lf‘"’ (416b)

where Y, 1s the stage vector computed in the preceding step and the matrix E'p can be used to control
the order of accuracy of Y. The second predictor formula (4.16b) is an extrapolation formula based
on the back values contained in the preceding stage vector Y,,. The first predictor formula (4.16a) is
obtained from (2.1) by replacing A with B + C and W,, with (E @ I)Y,,. This formula can be solved
by a modified Newton process (2.2) using the predictor formula (4.16b) to start the iteration process.
Performing only one outer iteration, this predictor formula becomes

(Lo W, (B4 Cyeshd,) (Y — Y-l
= (B )y DB+ e D) (YY) —(Ee)Y,), YUY,

where Y = (f) 1)Y,,. Evidently, the same LU decompositions as in (3.5) can be used, so that
only FBSs are needed.

We consider the predictor effect for linear problems and for E := eel. Let P be a matrix which
equals either I3 -+ (' or O). Then, we may write the residual function (2.1) and the predictors (4.16) as

R(Y)  (h'A Y l)((I K, ~Awhl,)Y — (£ K,)Y,),
(I I, P hd )Y = ()0 K,)Y,,
respectively. From (4.1) and (2.2) it follows that

Yyl oy [U(Y(l 0) Y(I)) M”(Y“” Y(I))
=ML K, — Awhd,) '(hAw DR, (Y?)
=M (YY) (T K, A hd,) N(E v K,)Y)
VUIWA“wahLYWEprM
m%[wAW“AthfWE%K“ﬂQ (4.17)
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Table 3
Actual upper bounds for pé;’ef!(z) for 4-stage Radau IIA with v, = 7/8
Jacobi Gauss—Seidel
v LSV (g =0) EPL (g = 3) GLM (¢ =2) LSV (¢g=0) EPL (g = 3) GLM (¢ =2)
1 2.66 6.98 348 0.92 395 2.93
2 1.15 2.27 1.30 0.61 4.17 0.88
3 0.84 1.34 0.91 0.54 1.97 0.67
4 0.71 1.02 0.76 0.51 1.36 0.61
00 0.45 0.45 0.45 0.45 0.45 0.45
Table 4
Total and effective LU- and FBS-costs for even or odd numbers of RK stages
Method Total LU/d? Total FBS/d"” Eff. LU/d? Eff. FBS/d*
Block-diagonalized Newton L or3(2s-1) 4s or4s —2 8
PILSRK: Gauss-Seidel Z 25T or 2(sF2 — T2 + 1) ST or §Th — T2 + 2

PILSRK: Jacobi

Wi Wi Wi

sl |

2sr 2r

Taking into account the computational effort involved in applying the predictor formula, we are led
to the following definition of the averaged amplification factor associated with (4.17):

P(2) = V\/sz—e(z)Z*(z)H, Z*(z) == (I — 2P)"'Ep — (I — zA)"'E, (4.18)

where §=1if P=B+Cand8=0if P =0.
A gth-order accurate predictor is obtained by defining Ep according to

Epe =e, EpX =U - PV,

U= (d/j), V:=(7", X:=(c-el/j), j=1...,q (4.19)

There are various options for choosing Ep. For P = O, we have considered the case Ep = eel (last
step value (LSV) predictor) and the case where Ep is defined according to (4.19) with ¢ = s — 1
(maximal order extrapolation (EPL)). For P = B + C, we defined Ep according to (4.19) with ¢ = 2
and we used the remaining free parameters to minimize both pl(ml,zd(z) + pggd(z) in the left halfplane
(GLM predictor).

Table 3 lists left halfplane upper bounds for pé’r’gd(z) in the case of the 4-stage Radau [IA method.
In appreciating these values, we should take the effect of the order of accuracy of the predictor into
account. For example, the LSV predictor together with the Gauss—Seidel version C' # O possesses the

smallest left halfplane upper bounds for p}(;r'gd(z), but its zero order will be a drawback (see Section 5).

4.5. Comparison of LU- and FBS-costs

We conclude this section by summarizing the total and effective LU-costs per Jacobian update and
the total and effective FBS-costs per outer iteration. Table 4 lists these costs for the block-diagonalized
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Newton, the Newton-PILSRK method derived above, and Newton-PILSRK methods with C' = O.
The cost formulas are given for the cases s even and s odd, assuming that the matrix A has no
real eigenvalues if s is even and only one real eigenvalue if s is odd. In the case of the PILSRK
{(QBQ, QC~7Q"} method, 7 and 7, respectively denote the averaged number of inner iterations
over all subsystems and over subsystems associated with the complex eigenvalue pairs of A. Finally,
r denotes the maximal number of inner iterations needed for the s subsystems in the PILSRK {B, 0O}
method. The figures in Table 4 show that the two PILSRK methods require the same number of (total
and effective) LU operations. Their effective FBS-costs are highly dependent on the value of 7, 7, and 7.

5. Numerical experiments

The aim of this section is to compare the algorithmic properties of the Newton—PILSRK method
{(2.2),(3.5)}. We compare the Gauss—Seidel version C' # O with Q orthogonal as analyzed in this
paper and the Jacobi version ' = O with () nonorthogonal analyzed in [9]. In both cases, we take
v = 7/8. The comparisons are carried out for a few test problems from the literature.

The corrector, i.e., the matrix A, is defined by the 4-stage Radau IIA corrector and the predictor
formula is either the LSV or the EPL predictor (see Section 4.4), and is specified in the tables of results.

In the Jacobi case, we have (cf. [9])

0.1096 —0.0430  0.0268 —0.0080
0.2085 0.3064 —0.0671 0.0211

B= 0.2484 0.0823 0.2573  -0.0142 =0, (5.1a)
0.2596 —0.0515 0.4219 0.0780
and in the Gauss—Seidel case
0.1175  —=0.0207 0.0255 -0.0017
;- 0.2555 0.2758  —0.0535 0.0037
-1 —0.0256 —-0.0076  0.2030 —0.0002 }°
0.0206 (0.0528 ().3488% 0.1549
(5.2a)

—0.0061 -0.0117 0.0002 -0.0019
—0.0281  ~0.0400 -0.0002 -0.0059
0.2492 0.3955 —0.0010 0.0614
0.2099 0.3114  0.0007 0.0470

=

Diagonalizing (3.5) by the transformation Y'/) = (S« [) X yields the method (3.6) with

2.9526 0.3159 1.5325 0.0276
~7.2663 —0.8756  -1.0553 —~0.3113

Sl 34200 09493 107997 —2.1349
34.8970 43753 429039 —5.8960 (5.1b)
0.1521 0 0 0 N
ne 0 0.19%6 0 0
- 0 0 01736 0

0 0 0 0.2269
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in the Jacobi case, and

0.2030  0.3803 -0.0763 —0.0904
—0.9495 —-0.8908 0.1977  0.2080

S=1 00858 01003 —0.1466 —0.0182 |
—0.2233 —0.2275 —0.9662 —0.9738
(5.2b)
02269 0 0 0
B 0 01737 0 0
= 0 0 0198 0
0 0 0  0.1521

in the Gauss—Seidel case.

Since this paper aims at a comparison of algorithmic properties, we avoided effects of stepsize
and iteration strategies by performing the experiments with fixed stepsizes h and fixed numbers of
outer iterations mn and inner iterations r. Furthermore, the Jacobian and the LU-decompositions were
computed in each integration step.

The tables of results list for various values of the numbers of outer iterations 1.2 and inner iterations r
the minimal number of correct digits at the end point:

cd = —log, Hyend - y(tcnd)H%~ (5.3)
Here, ye,q denotes the numerical solution at the end point teng. Negative cd values will be denoted by
cd = -

5.1. The transistor amplifier (index 1)

The first test problem is the transistor amplifier given in [6] on the interval [0,0.2] (see also [10]).
“his nonlinear, eight-dimensional problem of index 1 can be represented in the implicit form

Ky' = f(t.y)

with a constant, singular capacity matrix A Table 5 lists results for the EPL predictor and it = 2x 10 *.
In both versions, only two inner iterations are needed to produce the same accuracy as the modified
Newton process, but taking just one inner iteration seems to be the most efficient strategy. Furthermore,

Table 5
Transistor amplitier with EPL predictor and h = 2 x 10"
Jacobi version Newton Gauss-Seidel version
moor=1 r=2 — r=> <« r=2 r=1
| - 4.6 — 4.6 — 4.6 -
2 6.5 6.6 6.6 — 6.6 -
3 7.7 7.5 - 7.5 — 7.5 7.0
4 8.1 8.0 - 8.0 — 8.0 7.2

< 9.7 9.7 — 9.7 e 9.7 9.7
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Table 6

Transistor amplifier with LSV predictor and h = 2 x 107*

Jacobi version Newton Gauss—Seidel version
m r=1 r=2 r=3 r=4 — r=x <« r=4 r=3 r=2 r=1
1 - 2.1 2.9 3.1 - 32 — 3.1 2.8 2.0 1.1
2 1.4 37 4.7 4.4 — 4.4 — 4.4 4.2 37 2.0
3 2.5 4.9 5.9 5.8 — 5.8 — 5.8 5.6 4.9 2.7
4 34 6.0 6.6 6.7 — 6.7 — 6.8 6.9 6.2 3.7
o' 9.7 9.7 9.7 9.7 — 9.7 - 9.7 9.7 9.7 9.7
Table 7

The car axis problem with EPL predictor and h = 3 x 107*

Jacobi version Newton Gauss—Seidel version
m r=1 r=2 r=3 r=4 — r=00 — 7r=4 r=3 r=2 r=I|
1 - - 0.8 2.5 — 2.5 — 2.5 0.8 - -
2 1.8 2.0 2.4 5.4 — 5.4 — 5.4 24 1.9 -
3 1.9 53 6.5 6.5 — 6.6 — 6.6 5.4 4.3 1.8
4 2.4 6.3 6.6 6.6 — 6.6 - 6.6 6.6 6.0 26
o 6.6 6.6 6.6 6.6 — 6.6 — 6.6 6.6 6.6 6.6

in accordance with Table 3, the Jacobi version performs better than the Gauss-Seidel version (note
that the outer iteration process converges relatively slowly).

Next, we apply the LSV predictor. According to Table 3, now Gauss—Seidel should be the supe-
rior one. Table 6 shows that Gauss—Seidel does perform slightly better than Jacobi. Furthermore, a
comparison with Table 5 reveals that the EPL predictor is considerably more efficient than the LSV
predictor because of its higher order. We also tested the GLM predictor, but it could not beat the EPL
predictor. Apparently, a higher order of accuracy is more important than smaller amplification factors.

5.2. The car axis problem (index 3)

Table 6 presents results for the more complicated index 3 car axis problem consisting of 10
DAEs [10]. As in Table 5, Jacobi is slightly better than Gauss—Seidel and a one-inner-iteration strategy
is most efficient (note that here the outer iteration process converges relatively fast).

5.3. Concluding remarks

From the results in Tables 5-7 we may draw the following conclusions:

(i) The PILSRK inner iteration process profits most from high-order predictors.
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(it) If higher-order predictors like EPL are used, then the Gauss—Seidel version C' # O converges
slightly slower than the Jacobi version C' = O.

(iii) If the number of outer iterations ' increases, then the number of inner iterations 1 can be
chosen smaller.

(iv) In a (fixed m, fixed ) strategy, the one-inner-iteration strategy together with a high-order
predictor seems to be most efficient. A dynamic iteration strategy is expected to perform
several inner iterations in the first few outer iterations and only one inner iteration in the later
outer iterations.
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